Gravitational Waves from Binary Black Hole Mergers inside Stars.

نویسندگان

  • Joseph M Fedrow
  • Christian D Ott
  • Ulrich Sperhake
  • Jonathan Blackman
  • Roland Haas
  • Christian Reisswig
  • Antonio De Felice
چکیده

We present results from a controlled numerical experiment investigating the effect of stellar density gas on the coalescence of binary black holes (BBHs) and the resulting gravitational waves (GWs). This investigation is motivated by the proposed stellar core fragmentation scenario for BBH formation and the associated possibility of an electromagnetic counterpart to a BBH GW event. We employ full numerical relativity coupled with general-relativistic hydrodynamics and set up a 30+30  M_{⊙} BBH (motivated by GW150914) inside gas with realistic stellar densities. Our results show that at densities ρ≳10^{6}-10^{7}  g cm^{-3} dynamical friction between the BHs and gas changes the coalescence dynamics and the GW signal in an unmistakable way. We show that for GW150914, LIGO observations appear to rule out BBH coalescence inside stellar gas of ρ≳10^{7}  g cm^{-3}. Typical densities in the collapsing cores of massive stars are in excess of this density. This excludes the fragmentation scenario for the formation of GW150914.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relativistic SPH Calculations of Compact Binary Mergers

We review recent progress in understanding the hydrodynamics of compact binary mergers using relativistic smoothed particle hydrodynamics (SPH) codes. Recent results are discussed for both double neutron stars and black hole – neutron star binaries. The gravitational wave signals from these mergers contain a lot of information about the masses and radii of the stars and the equation of state of...

متن کامل

Consequences of Gravitational Radiation Recoil

Coalescing binary black holes experience an impulsive kick from anisotropic emission of gravitational waves. Recoil velocities are sufficient to eject most coalescing black holes from dwarf galaxies and globular clusters, which may explain the apparent absence of massive black holes in these systems. Ejection from giant elliptical galaxies would be rare, but coalescing black holes are displaced...

متن کامل

Massive Black Hole Binary Evolution

Coalescence of binary supermassive black holes (SBHs) would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interactions of the binary with stars and gas in a g...

متن کامل

Binary neutron star mergers in fully general relativistic simulations

We perform 3D numerical simulations for merger of equal mass binary neutron stars in full general relativity preparing irrotational binary neutron stars in a quasiequilibrium state as initial conditions. Simulations have been carried out for a wide range of stiffness of equations of state and compactness of neutron stars, paying particular attention to the final products and gravitational waves...

متن کامل

Detection of Gravitational Wave Emission by Supermassive Black Hole Binaries Through Tidal Disruption Flares

Galaxy mergers produce supermassive black hole binaries, which emit gravitational waves prior to their coalescence. We perform three-dimensional hydrodynamic simulations to study the tidal disruption of stars by such a binary in the final centuries of its life. We find that the gas stream of the stellar debris moves chaotically in the binary potential and forms accretion disks around both black...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 119 17  شماره 

صفحات  -

تاریخ انتشار 2017